Targeting WSTF Protein as a Strategy to Manage Chronic Inflammation Without Impairing Acute Immune Response

Researchers have identified a novel approach to control chronic inflammation by targeting the WSTF protein, potentially offering disease-specific treatment without impairing the body's response to acute threats.
Chronic inflammation is characterized by the immune system remaining persistently active, leading to long-term tissue damage and contributing to diseases such as arthritis, cancer, and autoimmune disorders. This ongoing inflammatory response differs from acute inflammation, which is a quick, protective reaction to infections or injuries. Recently, researchers from Mass General Brigham have identified a promising approach to selectively suppress chronic inflammation without compromising the body's ability to respond to immediate threats.
The key discovery centers around a protein called WSTF. The team found that WSTF plays a crucial role in the regulation of chronic inflammation. In inflamed human cells, WSTF interacts within the cell nucleus, where its degradation exposes pro-inflammatory genes, thereby intensifying inflammation. Importantly, loss of WSTF was observed only in instances of chronic inflammation, and not in acute responses, suggesting a distinct mechanism that can be targeted selectively.
Further studies in mouse models of aging and cancer demonstrated that reducing WSTF leads to increased inflammation, confirming its role in maintaining inflammatory balance. Building on these insights, the researchers developed a therapeutic strategy aimed at restoring WSTF levels, which successfully suppressed chronic inflammation in models of age-related diseases, metabolic dysfunction, and osteoarthritis. Tissue analysis from patients with liver disease (MASH) and osteoarthritis revealed a loss of WSTF in affected tissues, strengthening the potential clinical relevance.
The therapeutic approach involving WSTF restoration shows promise, as initial results indicate it can effectively reduce chronic inflammation. This breakthrough opens new pathways for treating chronic inflammatory conditions while preserving the immune system's capacity to handle acute challenges, such as infections. Moving forward, further research aims to validate WSTF-targeted therapies across broader disease settings and explore other related proteins involved in inflammation control.
The findings, published in Nature, mark a significant step toward more precise and effective treatments for chronic inflammatory diseases, potentially improving outcomes for millions affected worldwide.
Stay Updated with Mia's Feed
Get the latest health & wellness insights delivered straight to your inbox.
Related Articles
New Research Reveals a Biological Connection Between FND and Chronic Pain That Could Reduce NHS Healthcare Costs
A groundbreaking systematic review uncovers a shared neurobiological link between Functional Neurological Disorder and chronic pain, offering new pathways for treatment and NHS cost savings.
Innovative Drug IHMT-15130 Targets Heart Muscle Thickening and Inflammation
A novel compound, IHMT-15130, shows dual action in reducing heart muscle thickening and inflammation, offering new hope for cardiovascular therapies. Developed by Chinese researchers, it targets BMX kinase with high selectivity and efficacy in preclinical models.
European Launches New Toolkit to Combat Hepatitis in Prisons
A new European toolkit promotes strategies to eliminate hepatitis B and C in prisons, enhancing health equity and public health safety across Europe.



